목록방송통신대 컴퓨터과학과 (111)
navis
학습개요 메모리(주기억장치)의 구성과 관리는 운영체제의 설계에 가장 중요한 영향을 미치는 요인 중 하나로서, 실제로 시스템의 성능은 사용 가능한 메모리의 용량과 프로세스 처리 중 메모리를 얼마나 효과적으로 사용하는가와 관련이 큽니다. 이번 강의에서는 컴퓨터 시스템의 메모리 관리와 관련된 기초적인 개념을 다룹니다. 프로세스와 메모리의 관계, 기억장치의 구성, 프로그래밍 환경에 따른 메모리 할당과 보호, 메모리 배치기법 등의 기초적인 사항에 대해 살펴봅니다. 학습목표 프로세스와 메모리의 관계를 설명할 수 있다. 기억장치 계층구조를 설명할 수 있다. 다중 프로그래밍의 의미를 설명할 수 있다. 고정 분할과 동적 분할을 설명할 수 있다. 메모리 배치기법을 이해하고 적용할 수 있다. 정리하기 프로세스가 실행되기 위..
학습개요 시각은 인간이 정보를 취득하는 매우 중요한 감각 능력이다. 컴퓨터 시각은 사람이 가지고 있는 시각 능력을 컴퓨터에게 부여하기 위한 연구 분야이다. 컴퓨터 시각을 구현하려면 광학, 신호처리, 지능적 정보처리 등 여러 분야의 지식이 필요하다. 이번 강의에서는 컴퓨터 시각 시스템의 전반적 구성 및 디지털 영상의 처리를 위한 기본적 이론을 다루려고 한다. 학습목표 컴퓨터 시각 시스템의 전반적인 처리흐름을 이해한다. 디지털 영상의 입력을 위한 표본화 및 양자화의 개념을 설명할 수 있다. 기본적인 영상 필터링을 구현할 수 있다. 이진화를 위한 처리과정에 대해 설명할 수 있다. 분할과 합병의 기본 개념을 설명할 수 있다. 경계검출을 위한 연산자를 구현할 수 있다. 주요용어 컴퓨터 시각(computer vis..
학습개요 이번 강의에서는 그래프와 관련된 기본 개념(정의, 종류, 용어, 구현 방법)을 우선 살펴본 후, 그래프에 대한 기본 연산으로 사용되는 그래프 순회 방법을 학습한다. 또한 그래프 순회를 활용해서 위상 정렬, 연결 성분, 강연결 성분을 구하는 방법에 대해서도 함께 살펴본다. 학습목표 그래프의 개념, 주요 용어 그리고 구현 방법을 이해할 수 있다. 그래프의 순회 방법으로 깊이 우선 탐색과 너비 우선 탐색을 이해하고 적용할 수 있다. 그래프 순회 방법을 적용하여 위상 정렬, 연결 성분, 강연결 성분을 구할 수 있다. 주요용어 그래프(graph) - 연결할 객체를 나타내는 정점(vertex)의 집합과 정점을 연결하는 간선(edge)의 집합으로 구성된 비선형 자료구조 인접 행렬(adjacency matri..
학습개요 병행 프로세스의 교착상태를 처리하는 기법 중 교착상태 예방은 지난 강의에서 살펴보았습니다. 하지만 교착상태의 필요조건은 제거하지 못하는 경우도 있고 제거할 수는 있지만 자원이용률이 낮아지는 경우도 있습니다. 특히 환형대기 조건을 제거하는 방법은 적용에 어려움이 존재합니다. 교착상태를 처리하는 다른 기법인 교착상태 회피는 안전순서열이라는 개념을 이용하여 교착상태를 피하는 방법이고, 교착상태 탐지 및 복구는 교착상태가 발생하면 사후처리를 하는 방법입니다. 이번 강의에서는 교착상태를 회피하는 방법을 자세히 알아보고, 교착상태를 탐지 및 복구하는 방법에 대해서도 살펴봅니다. 학습목표 교착상태를 회피하는 방법을 설명할 수 있다. 교착상태를 탐지하고 복구하는 방법을 설명할 수 있다. 정리하기 교착상태 회피..
학습개요 우리 주변에서 볼 수 있는 사실이나 규칙들 중에는 완전한 참/거짓을 결정하기 어려운 경우가 많이 있다. 1965년 UC 버클리의 Zadeh 교수가 제시한 퍼지이론은 이러한 상황을 위한 이론으로, 진위값을 0부터 1까지의 값 중 하나로 표현한다. 퍼지이론은 집합으로부터 시작하여 논리 및 추론 영역까지 확장되었다. 이번 강의에서는 퍼지이론의 전반적인 개념을 학습한다. 학습목표 퍼지집합 및 소속함수의 개념을 설명할 수 있다. 퍼지집합의 연산을 할 수 있다. 퍼지논리 연산을 할 수 있다. 퍼지추론 과정에 대해 설명할 수 있다. 주요용어 퍼지집합 : 어떠한 대상이 집합에 포함될 가능성을 0부터 1까지의 값으로 표현한 집합 퍼지논리 : 명제의 논리값이 0부터 1의 범위에 속하는 값으로 표현되는 논리 비퍼지..
학습개요 탐색 알고리즘에 대한 지난 강의에 이어서 이번 시간에는 균형 탐색 트리로서 레드-블랙 트리와 B-트리를 이용하는 탐색 방법에 대해서 학습한다. 또한 삽입, 삭제, 탐색 연산을 기본적으로 상수 시간에 수행할 수 있는 해싱 기법에 대해서 살펴본다. 학습목표 레드-블랙 트리의 개념, 동작 그리고 성능과 특징을 이해하고 설명할 수 있다. B-트리의 개념, 동작, 그리고 성능과 특징을 이해하고 설명할 수 있다. 해싱의 개념, 그리고 해시 함수 및 충돌 해결 방법의 종류와 특징을 이해하고 설명할 수 있다. 주요용어 레드-블랙 트리(red-black tree) - 2-3-4 트리를 이진 탐색 트리 형태로 구현한 것으로서, 검정 노드와 빨강 노드로 구성된 균형 탐색 트리 B-트리 - 각 노드에 최대 2t개 미..